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Conditions for the existence of Lp-solutions (1--<p<-Oo) of linear impulsive 
equations in a Banach space are found. 

1. INTRODUCTION 

Impulsive equations are useful mathematical models of processes and 
phenomena in many fields of science and technology. These equations 
describe evolutionary processes which suddenly change their state at certain 
moments. In the mathematical simulation of such phenomena the duration 
of the change of the state is neglected and it is assumed that this change 
takes place by jumps. Processes of such character are observed in numerous 
problems of theoretical physics, control theory, biology, the theory of 
queues, ecology, pharmacokinetics, etc. 

The theory of impulsive differential equations was first developed by 
Myshkis and Mil'man (1960). After this publication numerous papers (e.g., 
Simeonov and Bainov, 1985a, b; Bainov and Simeonov, 1989) devoted to 
this subject appeared. The interest in impulsive differential equations is 
explained by the fact that, besides the great possibilities for the simulation 
of various processes, impulsive equations have many specific characteristics, 
such as the "beating" of solutions, the merging of solutions, bifurcation, 
the dying of solutions, the loss of the property of autonomy, etc., which 
make their theory much richer than the theory of ordinary differential 
equations. 

Together with the other branches of this theory, in recent years the 
development of the theory of abstract impulsive differential equations has 
begun (Bainov et  al., 1988; Zabreiko et al., 1988). 
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In the present paper  conditions for the existence of solutions of  abstract 
linear impulsive differential equations lying in the space L. (1-<p-< ~ )  are 
found. Note that many  results obtained in this work are also new for 
equations without an impulse effect. 

2. STATEMENT OF THE PROBLEM 

Let X be an arbitrary complex Banach space. Consider the impulsive 
equations 

dx 
dt - A(t)xl,~,. (1) 

x(t +) = Q.x(t;) (nc7/) (2) 

dx 
- a(t)x+f(t)[~,,.  (3) 

dt 
x( t+)=Q.x(t;)+h.  (ne7/) (4) 

where A: R--> L(X) [• = ( - ~ ,  ~ ) ]  is a continuous operator function with 
values in the space L(X) of  the linear bounded operator X --> X, Q. ~ L(X) 
(n ~Z) ;  f :  R-->X is a locally summable function; h = {h.}.~z is a sequence 
of elements of  X;  T = { t. }. ~z is a sequence of  points satisfying the condition 
t. < t.+l (n ~ Z), lira . . . .  t. = +co. 

Definition. The function x(t) :  R-->X is said to be a solution of the 
impulsive equation (1), (2) if for t # t. it is continuously differentiable and 
satisfies (1) and for t = t. it satisfies the " j um p"  condition (2). Analogously, 
a solution of the nonhomogeneous  equation (3), (4) is defined as well as 
a solution defined on an arbitrary interval. 

We shall say that condition (H) is satisfied if the following condition 
holds: 

~,(t, t+oJ)  
(H) sup lira - q < o o  

t G R  w --> oo (~0 

where by u(a, b) for a -< b we have denoted the number  of  points t. lying 
in the interval (a, b] and for a > b we set u(a, b) = -~,(b, a). 

Note that condition (H) implies the existence of  a constant l such that 
any interval on R of length l contains not more than A = l(q + 1) points of  
the sequence T. 

Let 1 <-p < oe and let El r R be a measurable set. By Lp([l, X) we shall 
denote the space of measurable functions x: 12 --> X for which ~n [] x(t)I[ p dt < 

with norm 

IIxllL,<n,• = ( fn llx( t)ll" dt) x/" 



Lp-Solutions of Linear Impulsive Equations 679 

By Ip(X) w e  shall denote the space of sequences h = {h.}.cz [h. ~ X (n c 7/)] 
for which ~ .~_~  [[ h. [[ p < ~ with norm 

Analogously we define the spaces Loo(~, X) and I~(s X). 
Let g(t, s): R x ~-> L(X) be a function satisfying the estimate 

]]g(t,s)l[<-Ke -'l'-~l (t, s6R) (5) 

where K,/x > 0. 

Lemma 1. The operator G defined by the formula 

Gf(t) = foo g(t, s)f(s) ds 

maps continuously Lp(R, X) into Lp(R, X) (1 -<p -< oo) and into Lo~(R, X). 

Proof Set F~ (t) = II f ( t  - s)l l .  ~n view of F~ c Lp (R, ~), from the estimate 

IlGf(t)ll < - f ~  K e '*Nllf(t-s)ll as 
3-0o 

we obtain the inequalities 

IIOfHL~(R'• f~o~ Ke-~'l*JF'ds 
Lp(~,~) 

<-- J_~ K e-'I~qIIF~IIL.~,R) ds 

= 2/ll/llLp(~,x~ 
/x 

which imply that Gf e Lp(N, X) and that the map G: Lp(N, X) ~ Lp(N, X) 
is continuous. The inclusion Gf~ L~(N, X) and the continuity of the map 
G: Lp(R, X) -> L~(N, X) are easily proved by H61der's inequality. 

Lemma 1 is proved. �9 

Lemma 2. Let condition (H) hold. Then the operator G defined by the 
formula 

Gh(t)= ~ g(t, tn)h. (6) 
n ~ - - o o  

maps continuously lp(X) into Lp(R, X) (1-<p-< co) and into L~(R, X). 
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Proof Let h = {h.}.~z be an arbitrary sequence of Is(X ). From (6) and 
H61der's inequality there follow the inequalities 

[IGh(t)ll -< E Ilg(t,t .)lt" Ilh.l[ 

. . . . .  I I h . l l "  

where 1/p + 1 /p '= 1. Inequality (5) implies 

,, (~,,,~tx)_. L~(a.x} _< K (._~ e-~*Pq'-'.l) 1/p' 

Condition (H) implies the estimate 

e-~*P'lt-r = 2 ~ e-**P'lr-'"l <- 2A 
n = - - o o  m = - - m  t + m l < t , ~ < t + ( m + l ) l  1 - -  e - ~ p ' l  

Using again H61der's inequality, we obtain the inequalities 
e o  

HGh(t)N<- 2 Ilg( t , t . )H" Hh.ll 
n = - o o  

o o  

<- K E e-"l '-"ll lh,  ll 
n ~ - - o o  

o:3 

= K Y, e -("/p%'-'.l e-("/P)l'-'olllh, ll 
n = - - o o  

<-K e ~lt-t.I e -"It-col h~ p 
n c o  \ n = - c o  

Taking into account the estimate 

e_~l,_t l< - 2A 
n =-oo 1 -- e -~*i 

we obtain 

L IIGh(t)ll p d t ~ (  2a .)P 1gp ~ e -•1' '~176 dt 
\ l - e  "'] . . . . . .  

= \ l - - - f - ~ ]  Kv  ,=-ooE e-"l'-'~ dt IIh.[I ~ 

f ~-oo e-~*t' t.I dt < 2 (n ~ 77) 
tx 

In view of 

(7) 
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(7) implies the inequality 

1{  2A ~ P-IKp 
f~_ [ [ G h ( t ) l l P d t < < - S \ ~ j  

Lemma 2 is proved. �9 

n = - o o  

681 

3. MAIN RESULTS 

3.1. Stationary Case 

In this section we consider the case when 

A ( t ) = A = c o n s t .  (t ~ R), Qn = Q = const �9 ( n ~ Z )  

Theorem 1. Let the following conditions be fulfilled: 

1. Condition (H) holds. 
2. The operator Q has a logarithm L,Q = S ~ L ( X )  and AS = SA. 
3. The spectrum Sp(A) of  the operator A = A +  qS has no points on 

the imaginary axis. 

Then for any function f ~  Lp(~, X )  and any sequence h ~ Ip(X) the 
nonhomogeneous impulsive equation (3), (4) has in Lp(R, X) a unique 
solution and this solution is bounded. 

Proof From condition'3 of Theorem 1 it follows that Sp(A) is split 
into two spectral sets Sp_(A) and Sp+(A) [Sp(A)= Sp_(A)w Sp+(A)] of 
which Sp_(A) lies in the left half-plane and Sp+(A) in the right (Daleckii 
and Krein, 1974). The space X is split into a direct sum of  two subspaces 
X_ and X+, where X• = P• and 

P• ~ R~dA 
• 

where F• are contours surrounding Sp• in the respective half-planes 
and R, is the resolvent of  the operators A. It is standard to verify that the 
operators P~, A, S, and A commute two by two. 

Introduce the operator-valued function G: E2_~ L(X) by the formula 
(Bainov et al., 1988) 

[_e(t-~)A+,,(t,r)p+ 
O(t, r) = [e(,_~)A+.(,..~)p_ ' 

--oo < t <_ .r < co 
- - o o < ~ - < _ t < ~  
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The operator-valued function G(t, r) has the following properties: 

dG(t, r) 
=AG(t , r )  (t, r e ~ ,  t~T, t # r )  

dt 

G(tf ,  r ) - G ( t ; , r ) = Q G ( t f ,  r) (r#tj , je77) 

G ( t + , t ) - G ( t - , t ) = l  ( t~T,  I = idL~x)) (8) 

G( tT, t j)-  G( tT, tj)= QG( tf , tj) + I ( j  c 7/) 

3K, t~ >0:  IIG(t,r)ll~Ke -"l'-< (t, rE~) 

Consider the function x(t) (t ~ ~) defined by the formula 

x(t) = G(t, r)f(r) dr+ Y~ G(t, tj)hj (tel~) (9) 

From Lemmas 1 and 2 it follows that x(t) ~ Lp(R, X)  c~ Loo(R, X). In view 
of the properties of the operator-valued function G(t, r) it is standard to 
show that x(t) is a solution of the impulsive equation (3), (4) on R. 

We shall show that the solution x(t) is unique. For this purpose we 
shall show that the unique solution y(t) of the homogeneous equation (1), 
(2) which lies in Lp(R, X) is the solution y(t) =-- O. For the solution y(t) the 
following representation is valid: 

y(t) = eC'-'~176 (t, to e ~) 

For p = co the uniqueness is proved in Bainov et al. (1988) (see Corollary 
2 of Theorem 4). Let 1 --- p < oo. Choose to = 0 .and denote y(0) = Yo, B(t) = 
A+(1/t)v(O, t)S. Then from condition (H) it follows that for sufficiently 
large values of I tl the spectrum of the operator 

B ( t ) = A + O ( 1 ) S  (,tl+~) 

does not intersect the imaginary axis (Daleckii and Krein (1974)). 
For t e R the following representation is valid: 

y(t) = et~~ o 

i.e., 

y( t) = etB+(')P+( t)yo + e'B-<~ t)yo 

where P+(t) and P_(t)( t~R) are the respective complementary operators 

P ~ ( t ) = - 1  q~ RA(B(t))dA 
2rri 3r'~ 
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[F• are contours surrounding Sp• and B•177 Since 
B( t )~A( t~co) ,  then by Theorem 2.2 of Daleckii and Krein (1974) the 
relation 

P• ~ P~: (10) 

is valid, whence it follows that 

B •  ~ A P •  = A•  itl-~oo 

Let t >--0. Then by Lemma 6.3 of Daleckii and Krein (1974) there exists 
constants No, Uo> 0 such that the following estimate is valid: 

Ile'~-('> P_( t)yoll <- No e-%'llP_( t )yoll (11)  

From (10) it follows that e'S-(')P_(t)yo~Lp((O, co),X) and hence 
e'B+(')P+(t)yoeLp((O, oo),X). We shall show that P+yo=O. In fact, 
analogously to (11), we obtain that there exist constants N~, ~,l>O such 
that for t -  0 the estimate 

Hp§ -- [le.-B+(,~) e'B+(')p+(t)yo[I 

<~ N 1 e-~,'lle'B+('P+( t)yoll 
is valid, i.e., 

> 1 
IIe '~+( ')P+( t)yo II - ~ e ""ll P+(t)yoll (12) 

Let e > 0 be arbitrarily chosen. There exists a number T(e) for which 
for t >- T(e) the following inequality is valid: 

IIP+( t)yoll >-IlP+yoll- e (13) 

From (12) and (13) there follows the inequality 

> 1 
II e'~+(')P§ - - ~  e~"(ll P§ - ~) 

Since e'Z*(')P+(t)yo~Lp((O, oo),X), then HP+yoll=0, i.e., yoeX_.  
Analogously, if we consider the case t -~ -co, we obtain that Yo c X§ whence 
we conclude that yo = 0. Hence the trivial solution is the unique solution 
of  the homogeneous equation (1), (2) which lies in Lp(R, X). 

Theorem 1 is proved. �9 

Remark 1. From formula (9) and Lemmas 1 and 2 it follows that if 
f e  L~(R, X)  and h c / ~ ( X ) ,  then for x(t) the following estimate is valid: 

[IxnL~(a,x) < - C max{ Ilf U L~(~,x), sup UhjH} 

where the constant C does not depend on f and h. 
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The following theorem is in a certain sense inverse to Theorem 1. 

Theorem 2. Let a number p (1 -<p - ce) exist such that for any function 

(14) 

f ~ Lp(•, X )  the equation 

x' = Ax +f ( t )  

has just one solution x ( t )~  Lp(~, X) .  
Then the operator A has no eigenvalues on the imaginary axis. 

Proof Let y e X (y r 0) be an eigenvector of  the operator correspond- 
ing to the eigenvalue ip. If p < oo, then set 

f ( t ) = ~  ei~ Itl<- I (15) 
to, Itl>l 

Let x(t)  be the solution corresponding to the function (15) which belongs 
to Lp(R, X) .  We apply the operator A to both sides of (14) and obtain 

(Ax)'  ( = A ( x ' ) ) = A ( A x ) + i p f ( t )  

Since the solution of (14) which belongs to Lp(R,X)  is unique, then 
Ax( t )  = ipx(t). Then from (14) it follows that 

(x e-i~ ' = e-i~ 

Integrate equality (16) from - t  to t (t_> 1) and obtain 

x(t)  e - i ~  ei~ ( t ~  1) 

which obviously contradicts the condition x( t )  e Lp(R, X).  
For p = oo set f ( t ) =  e i~ (t e R). Then, integrating (16) from 0 to t, we 

obtain 

x(t)  e-ipt-x(O) = ty, -00< t < ~  

from which for [t[ ~ ~ we again obtain a contradiction. 
Theorem 2 is proved. �9 

3.2. Nonstationary Case 

Denote by U(t, z) (t, ~"-> 0) the evolutionary operator of the impulsive 
equation (1), (2) (Zabreiko et al., 1988), i.e., the linear operator which 
associates with an arbitrary Xo~ X the solution x = x(t, ~-; Xo) of  the impul- 
sive equation (1), (2) with initial condition x(z  +) = Xo. 

Theorem 3. Let the following conditions be fulfilled: 

1. Condition (H) holds. 
2. There exist constants N, v > 0 such that 

[[U(t,~-)l[<_Ne -~('-~) (0_< ~-___ t < m )  
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Then for any function f e  L,(R§ X) JR+ = (0, oo)] and any sequence 
h e Ip(X) there exists a solution of the impulsive equation (3), (4) defined 
on the semiaxis R§ and lying in Lp(R§ X) n L~(R§ X). 

Proof. It is standard to verify that an arbitrary solution x(t) of the 
impulsive equation (3), (4) defined on ~+ is represented in the form 

x(t)=g(t,O)x(O+)+ g(t,'r)f(r)dT+ • U(t,t.)h. 
0 < i / n <  f 

The proof of Theorem 3 follows from condition 2 and Lemmas 1 
and 2. 
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